

Tetrahedron: Asymmetry 11 (2000) 1-8

New polyhydroxylated pyrrolizidine alkaloids from *Muscari* armeniacum: structural determination and biological activity

Naoki Asano,^{a,*} Hiroyo Kuroi,^a Kyoko Ikeda,^a Haruhisa Kizu,^a Yukihiko Kameda,^a

Atsushi Kato,^b Isao Adachi,^b Alison A. Watson,^c Robert J. Nash^c and George W. J. Fleet^d

^aFaculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan

^bDepartment of Hospital Pharmacy, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan ^cInstitute of Grassland and Environmental Research, Aberystwyth, Cardiganshire SY23 3EB, UK ^dDyson Perrins Laboratory, Oxford University, Oxford OX1 3QY, UK

Received 26 October 1999; accepted 15 November 1999

Abstract

Four new polyhydroxypyrrolizidines, hyacinthacines A₁, A₂, A₃ and B₃, have been isolated from the bulbs of *Muscari armeniacum* (Hyacinthaceae) in addition to the known hyacinthacine C₁, which was isolated from *Hyacinthoides non-scripta* (Hyacinthaceae). The structures of hyacinthacines A₁, A₂, A₃ and B₃ were identified on the basis of extensive NMR studies as (1S,2R,3R,7aR)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine, (1R,2R,3R,7aR)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine, (1R,2R,3R,7aR)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine and (1S,2R,3R,5R,7aR)-3-hydroxymethyl-5-methyl-1,2,7-trihydroxypyrrolizidine, respectively, or the corresponding enantiomers. The inhibitory activities of these new hyacinthacines against a variety of glycosidases are described. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Polyhydroxylated pyrrolizidine alkaloids with a hydroxymethyl substituent at C-3 have long been thought to be of very restricted natural occurrence. The alexines and australines have only been reported in two small genera of the Leguminosae (*Castanospermum* and *Alexa*), and casuarine occurs only in the related genera in the Casuarinaceae and Myrtaceae.¹ We recently isolated three new polyhydroxylated pyrrolizidines, hyacinthacines B₁, B₂ and C₁, from the immature fruits and stalks of bluebells, *Hyacinthoides non-scripta* (Hyacinthaceae).² Bluebells co-produce 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), (2R,5R)-bis(hydroxymethyl)-3(R),4(R)-dihydroxypyrrolidine (DMDP), 2,5-dideoxy-

PII: S0957-4166(99)00508-X

^{*} Corresponding author. Tel: +81-76-229-6196; fax: +81-76-229-2781; e-mail: naoki22@po.incl.ne.jp

^{0957-4166/00/\$ -} see front matter $\ensuremath{\mathbb{O}}$ 2000 Elsevier Science Ltd. All rights reserved.

2,5-imino-DL-*glycero*-D-*manno*-heptitol (homoDMDP), homoDMDP-7-*O*-apioside and homoDMDP-7-*O*-β-D-xylopyranoside.

One of the best known approaches to finding novel compounds in plants is to examine close taxonomic relatives. GLCMS analysis of an extract of *Muscari armeniacum*, which is closely related to *H. non-scripta*, showed the existence of new pyrrolizidine alkaloids other than hyacinthacine C₁, homoDMDP, 6-deoxy-homoDMDP, homoDMDP-7-*O*-apioside and DMDP-7-*O*- β -D-xylopyranoside, which have been found in *H. non-scripta* and *Hyacinthus orientalis*.³ In this paper we report the isolation of new polyhydroxylated pyrrolizidine alkaloids from the bulbs of *M. armeniacum*, their structural determination and glycosidase inhibitory activity (Fig. 1).

Fig. 1. Structures of polyhydroxylated pyrrolizidines isolated from the plants in the Hyacinthaceae

2. Results and discussion

A 60% EtOH extract of the bulbs (4 kg) of *M. armeniacum* was chromatographed with various ionexchange resins to give hyacinthacines A_1 (21 mg), A_2 (5 mg), A_3 (6 mg) and B_3 (72 mg), in addition to the known alkaloids, hyacinthacine C_1 (7 mg), homoDMDP (75 mg), 6-deoxy-homoDMDP (70 mg), homoDMDP-7-*O*-apioside (120 mg) and homoDMDP-7-*O*- β -D-xylopyranoside (210 mg).

The ¹³C NMR spectral analysis of hyacinthacine A₁ revealed the presence of four methylene and four methine carbon atoms (Table 1). This result and HRFABMS (m/z 174.1129 [M+H]⁺) established that the molecular formula was C₈H₁₅NO₃. Hyacinthacine A₁ gave a tri-*O*-SiMe₃ derivative and its GLCMS analysis showed a characteristic fragment ion at m/z 374 [M–CH₃]⁺ and a base peak at m/z 286 [M–CH₂OSiMe₃]⁺. The ¹H NMR spectral data, combined with extensive decoupling experiments and 2D ¹H–¹³C COSY spectral data, defined the complete connectivity of the carbon and hydrogen atoms. The ¹³C NMR data of polyhydroxylated pyrrolizidine alkaloids isolated are summarized in Table 1. From these NMR results in CD₃OD, the methylene triplet at δ 65.2 (C-8) was attributed to the hydroxymethyl carbon. The methine doublets at δ 73.7 and 77.5 were assigned to C-1 and C-2 bearing the OH groups, respectively, due to the appearance in the low-field region of H-1 (δ 3.87, $J_{1,2}=J_{1,7a}=4.0$ Hz) and H-2 (δ 3.88, $J_{1,2}=4.0$, $J_{2,3}=9.0$ Hz). The methines at δ 71.9 (C-3) indicated that it must be bonded to the nitrogen of the heterocyclic ring, with the hydroxymethyl group, and the last one at δ 67.9, with the doublet of double doublets at δ 3.47 in the ¹H NMR spectrum, was identified as the bridgehead C-7a. These data suggest that this compound has a pyrrolizidine ring system. The relative configurations at the stereogenic centers in hyacinthacine A₁ were determined by extensive NOE experiments. The NOE interactions are shown in Fig. 2. The definite NOE effects between H-3 and H-5 α and between H-5 α and H-7 α indicate that H-3, H-5 α and H-7 α are on the same side of the ring. Irradiation of H-7a at δ 3.47 enhanced the NOE intensity of H-1, H-2 and H-7 β . Thus, hyacinthacine A₁ was determined to be (1*S*,2*R*,3*R*,7a*R*)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine or its enantiomer.

С	A ₁	A_2	A ₃	B ₃
1	73.7 d	82.9 <i>d</i>	82.6 <i>d</i>	72.2 d
2	77.5 d	79.8 d	80.4 <i>d</i>	77.4 d
3	71.9 <i>d</i>	72.1 <i>d</i>	64.8 <i>d</i>	63.8 <i>d</i>
5	57.5 <i>t</i>	57.7 <i>t</i>	61.6 <i>d</i>	57.1 <i>d</i>
6	28.8 <i>t</i>	27.3 <i>t</i>	34.3 <i>t</i>	44.4 <i>t</i>
7	26.0 <i>t</i>	32.5 <i>t</i>	30.4 <i>t</i>	71.5 <i>d</i>
7a	67.9 d	69.2 d	70.8 <i>d</i>	77.0 <i>d</i>
8	65.2 <i>t</i>	65.3 <i>t</i>	64.6 <i>t</i>	65.0 <i>t</i>
9			17.9 q	17.5 q

 Table 1

 ¹³C NMR chemical shifts^a for hyacinthacines A₁ (CD₃OD), A₂ (D₂O), A₃ (D₂O) and B₃ (CD₃OD)

^a Chemical shifts are expressed in ppm downfield from sodium 3-(trimethylsilyl)propionate (TSP) in D_2O , and Me_4Si (TMS) in CD_3OD as internal standards.

NOE Effects

Fig. 2. NOE interactions for hyacinthacine A1

Hyacinthacine A₂, as well as hyacinthacine A₁, gave a tri-*O*-SiMe₃ derivative and a characteristic fragment ion at m/z 374 [M–CH₃]⁺ and a base peak at m/z 286 [M–CH₂OSiMe₃]⁺. The results of ¹³C NMR (Table 1) and HRFABMS (m/z 174.1129 [M+H]⁺) analyses, together with GLCMS analysis, suggest that hyacinthacine A₂ is an epimer of A₁. The ¹H NMR spectral data, combined with extensive decoupling experiments and 2D ¹H–¹³C COSY spectral data, defined the complete connectivity of the carbon and hydrogen atoms. In the ¹H NMR spectrum in D₂O, the large coupling constants ($J_{1,2}=J_{2,3}=8.8$ Hz) seen in H-2 signal indicate the all *trans*-axial configuration of H-1, H-2 and H-3. The relative

configurations at the stereogenic centers in hyacinthacine A_2 were also corroborated by the definite NOE effects between H-1 and H-3 and between H-2 and H-7a (Fig. 3). Thus, hyacinthacine A_2 was determined to be (1R, 2R, 3R, 7aR)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine or its enantiomer.

NOE Effects

Fig. 3. NOE interactions for hyacinthacine A_2

The ¹³C NMR spectral analysis of hyacinthacine A₃ revealed the presence of one methyl, three methylene and five methine carbon atoms (Table 1). This result and HRFABMS (m/z 188.1286 [M+H]⁺) established that the molecular formula was C₉H₁₇NO₃. Hyacinthacine A₃ gave a tri-*O*-SiMe₃ derivative and its GLCMS analysis showed a characteristic fragment ion at m/z 388 [M–CH₃]⁺ and a base peak at m/z 300 [M–CH₂OSiMe₃]⁺. The ¹H NMR spectral data, combined with extensive decoupling experiments and 2D ¹H–¹³C COSY spectral data, defined the complete connectivity of the carbon and hydrogen atoms. Irradiation of H-3 enhanced the NOE signal intensity of H-1 and the methyl group at C-5 (Fig. 4). This indicates that H-1, H-3 and the methyl group are on the same side of the ring. The relative configurations at the stereogenic centers in hyacinthacine A₃ were also corroborated by the definite NOE effect between H-2 and H-7a, and the large coupling constants ($J_{1,2}$ =7.3 Hz, $J_{2,3}$ =8.1 Hz) seen in H-2 signal. Thus, hyacinthacine A₃ was determined to be (1*R*,2*R*,3*R*,5*R*,7a*R*)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine or its enantiomer.

► NOE Effects

Fig. 4. NOE interactions for hyacinthacine A₃

The ¹³C NMR spectral analysis of hyacinthacine B₃ revealed the presence of one methyl, two methylene and six methine carbon atoms (Table 1). This result and HRFABMS (m/z 204.1236 [M+H]⁺)

established that the molecular formula was C₉H₁₇NO₄. Hyacinthacine B₃ gave a tetra-O-SiMe₃ derivative and its GLCMS analysis showed a characteristic fragment ion at m/z 476 [M-CH₃]⁺ and a base peak at m/z 388 [M-CH₂OSiMe₃]⁺. The ¹H NMR spectral data, combined with extensive decoupling experiments and 2D ¹H-¹³C COSY spectral data, defined the complete connectivity of the carbon and hydrogen atoms. From these NMR results in CD₃OD, the methylene triplet at δ 65.0 (C-8) was attributed to the hydroxymethyl carbon. Two methine carbons at δ 57.1 and 63.8 were assigned to C-5 and C-3, which must be bonded to the nitrogen of the heterocyclic ring, with the methyl and hydroxymethyl groups, respectively. The methine doublets at δ 71.5, 72.2 and 77.4 were assigned to C-7, C-1 and C-2 bearing the OH groups, respectively, and the remaining methine carbon at δ 77.0, with the doublet of doublets ($J_{1,7a}$ =4.6 Hz, $J_{7,7a}$ =4.2 Hz) at δ 3.30 in the ¹H NMR spectrum, was identified as the bridgehead C-7a. The relative configurations at the stereogenic centers were determined by extensive NOE experiments (Fig. 5). Irradiation of H-7a enhanced the NOE signal intensity of H-1 and H-2, and a strong NOE between the methyl group at C-5 and H-3 or H-7 was also observed. These NOE interactions indicate that H-1, H-2 and H-7a are on the same side of the ring and the methyl group, H-3 and H-7 on the opposite side. Thus, hyacinthacine B_3 was determined to be (1S,2R,3R,5R,7R,7aR)-3-hydroxymethyl-5methyl-1,2,7-trihydroxypyrrolizidine or its enantiomer.

NOE Effects

Fig. 5. NOE interactions for hyacinthacine B₃

The IC₅₀ values of new pyrrolizidine alkaloids against various glycosidases are shown in Table 2. We have reported that hyacinthacine B₂ is a potent inhibitor of rat intestinal lactase.² The present work revealed that hyacinthacine A₁, which loses the hydroxymethyl group at C-5 in hyacinthacine B₂, was also a potent inhibitor of the same enzyme, with an IC₅₀ value of 4.4 μ M. Hyacinthacine A₁ was, furthermore, a moderate inhibitor of α -L-fucosidase and amyloglucosidase, with IC₅₀ values of 46 and 25 μ M, respectively. The inversion of the hydroxyl group at C-1 in hyacinthacine A₁ to give hyacinthacine A₂ enhanced its inhibitory potential toward amyloglucosidase but abolished its inhibition toward α -L-fucosidase. Hyacinthacine A₃, which is the α -5-*C*-methyl derivative of hyacinthacine A₂, was a two-fold less effective inhibitor of rat intestinal lactase and amyloglucosidase than hyacinthacine A₂. Hyacinthacine B₃ proved to be a moderate inhibitor of lactase and amyloglucosidase, but had no significant activity toward other glycosidases. The introduction of a hydroxyl group to C-7 α or C-7 β in hyacinthacine A₂ gives 7a-*epi*alexine (australine) or 7,7a-di*epi*alexine, respectively, and these two compounds have been known to also be potent inhibitors of amyloglucosidase.^{4,5} It is not usually easy to predict whether it will inhibit a particular glycosidase from the configuration of the hydroxyl groups and the difference of the substituent on the pyrrolizidine ring. It would be of value to have a variety of highly oxygenated or substituted pyrrolizidine alkaloids in order to understand the structural requirements for glycosidase inhibition.

Enzyme	IC ₅₀ (μM)				
	$\overline{A_1}$	A_2	A_3	\mathbf{B}_3	
α-Glucosidase					
Rice	240	NI ^a	NI	NI	
Rat intestinal maltase	NI	NI	NI	NI	
β-Glucosidase					
Almond	250	150	NI	NI	
α-Mannosidase					
Jack bean	NI	NI	NI	NI	
β-Mannosidase					
Rat epididymis	390	1000	NI	NI	
β-Galactosidase					
Rat intestinal lactase	4.4	73	160	18	
α -L-Fucosidase					
Rat epididymis	46	NI	NI	850	
Trehalase					
Porcine kidney	NI	260	NI	NI	
Amyloglucosidase					
Aspergillus niger	25	8.6	17	51	

 Table 2

 Concentration of alkaloids giving 50% inhibition of glycosidase activities

^a No inhibition (less than 50% inhibition at 1000 μ M).

3. Experimental

3.1. General

The purity of samples was checked by HPTLC on Silica Gel 60F₂₅₄ (E. Merck) using the solvent system 4:1:1 PrOH:AcOH:H₂O, and a chlorine–*o*-tolidine reagent or iodine vapor was used for detection. Optical rotations were measured with a Jasco DIP-370 digital polarimeter. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Jeol JNM-GX 400 spectrometer. Chemical shifts are expressed in ppm downfield from sodium 3-(trimethylsilyl)propionate (TSP) in D₂O and Me₄Si (TMS) in CD₃OD as internal standards. MS were measured on a Jeol JMS-SX 102A spectrometer. In GLCMS analyses, samples were dried and silylated at 20°C for 60 min using 100 µL of Sigma Sil-A (Sigma Chemical Co.) per milligram of material. The column was a 25m×0.25 mm BPX5 (film thickness, 0.25 µm) capillary column (SGE), and the 25 min temperature program ran from 180 to 300°C with an initial rate of increase of 10°C/min and then held at 300°C. The mass spectrometer was a Perkin–Elmer QMASS 910 set at 70 eV and a mass range of 100–650 amu.

3.2. Extraction and isolation

A 60% EtOH extract of the bulbs (4 kg) of *Muscari armeniacum* was applied to a column of Amberlite IR-120B (500 mL, H⁺ form). The 0.5 M NH₄OH eluate was concentrated to give a brown oil (14 g), which was chromatographed over a Dowex 1-X2 column (2.5×95 cm, OH⁻ form) with H₂O as eluant (fraction size 11 mL). The H₂O eluate was divided into four pools: A (fractions 48–57, 310 mg), B (fractions 58–66, 230 mg), C (fractions 67–80, 110 mg) and D (fractions 101–130, 225 mg). The MeOH eluate from the same column was designated pool E (160 mg). Pool A was further chromatographed on a CM-Sephadex C-25 column (2.2×60 cm, NH₄⁺ form) with 0.01 M NH₄OH as eluant to give hyacinthacine A₁ (21 mg) and hyacinthacine A₂ (5 mg), and the elution with 0.02 M NH₄OH gave hyacinthacine A₃ (6 mg) and hyacinthacine B₃ (72 mg). Further chromatography of pool B with an Amberlite CG-50 column (2.2×60 cm, NH₄⁺ form) (H₂O elution) gave 6-deoxy-homoDMDP (70 mg), and that of pool C with the same column (0.05 M NH₄OH elution) gave homoDMDP (75 mg) and hyacinthacine C₁ (7 mg). Pools D and E were chromatographed on a Dowex 1-X2 (1.5×40 cm, OH⁻ form) with 50% MeOH as eluant to give homoDMDP-7-*O*- β -D-xylopyranoside (210 mg) and homoDMDP-7-*O*-apioside (120 mg), respectively.

3.3. Glycosidase inhibitory activities

The enzymes α -glucosidase (from rice), β -glucosidase (from almond), α -mannosidase (Jack bean), trehalase (from porcine kidney), amyloglucosidase (from *Aspergillus niger*), *p*-nitrophenyl glycosides and disaccharides were purchased from Sigma Chemical Co. Brush border membranes, prepared from the intestine of male Wistar rats using the method of Kessler et al.,⁶ were used as the source of rat intestinal glycosidases. The rat epididymal fluid was purified from epididymis according to the method of Skudlarek et al.⁷

The activities of rice α -glucosidase, rat intestinal glycosidases, trehalase and amyloglucosidase were determined using the appropriate disaccharides as substrates at the optimum pH of each enzyme. The released D-glucose was determined colorimetrically using Glucose B-test Wako (Wako Pure Chemical Ind.). Other glycosidase activities were determined using an appropriate *p*-nitrophenyl glycoside as a substrate at the optimum pH of each enzyme. The released *p*-nitrophenyl model was measured spectrometrically at 400 nm.

3.4. Hyacinthacine A_1 , (1S*,2R*,3R*,7aR*)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine

[α]_D +38.2 (*c* 0.23, H₂O); HRFABMS: *m/z* 174.1129 [M+H]⁺ (C₈H₁₆NO₃ requires 174.1130); $\delta_{\rm H}$ (400 MHz, CD₃OD) 1.68 (1H, m, H-7β), 1.74 (1H, m, H-6β), 1.93 (1H, m, H-6α), 2.08 (1H, m, H-7α), 2.65 (1H, ddd, $J_{5\alpha,6\alpha}$ =6.1 Hz, $J_{5\alpha,6\beta}$ =8.1 Hz, $J_{5\alpha,5\beta}$ =10.0 Hz, H-5α), 2.76 (1H, ddd, $J_{2,3}$ =9.0 Hz, $J_{3,8}$ =6.4 Hz, $J_{3,8'}$ =3.4 Hz, H-3), 3.05 (1H, ddd, $J_{5\beta,6\alpha}$ =4.9 Hz, $J_{5\beta,6\beta}$ =6.4 Hz, $J_{5\alpha,5\beta}$ =10.0 Hz, H-5β), 3.47 (1H, ddd, $J_{1,7a}$ =4.0 Hz, $J_{7a,7\alpha}$ =6.6 Hz, $J_{7a,7\beta}$ =8.1 Hz, H-7a), 3.58 (1H, dd, $J_{3,8}$ =6.4 Hz, $J_{8,8'}$ =11.3 Hz, H-8), 3.78 (1H, dd, $J_{3,8'}$ =3.4 Hz, $J_{8,8'}$ =11.3 Hz, H-8'), 3.87 (1H, t, $J_{1,7a}$ = $J_{1,2}$ =4.0 Hz, H-1), 3.88 (1H, dd, $J_{1,2}$ =4.0 Hz, $J_{2,3}$ =9.0 Hz, H-2); ¹³C NMR data, see Table 1.

3.5. Hyacinthacine A₂, (IR*,2R*,3R*,7aR*)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine

[α]_D +20.1 (*c* 0.44, H₂O); HRFABMS: *m*/*z* 174.1127 [M+H]⁺ (C₈H₁₆NO₃ requires 174.1130); $\delta_{\rm H}$ (400 MHz, D₂O) 1.77 (1H, m, H-7α), 1.82 (1H, m, H-6β), 1.90 (1H, m, H-6α), 1.97 (1H, m, H-7β), 2.77

(1H, ddd, $J_{2,3}=8.8$ Hz, $J_{3,8}=6.5$ Hz, $J_{3,8}'=3.9$ Hz, H-3), 2.81 (1H, dt, $J_{5\alpha,6\alpha}=J_{5\alpha,6\beta}=5.6$ Hz, $J_{5\alpha,5\beta}=11.0$ Hz, H-5 α), 2.96 (1H, ddd, $J_{5\beta,6\alpha}=7.3$ Hz, $J_{5\beta,6\beta}=5.9$ Hz, $J_{5\alpha,5\beta}=11.0$ Hz, H-5 β), 3.32 (1H, m, H-7 α), 3.67 (1H, dd, $J_{3,8}=6.5$ Hz, $J_{8,8}'=11.8$ Hz, H-8), 3.76 (1H, dd, $J_{1,2}=8.8$ Hz, $J_{1,7a}=7.1$ Hz, H-1), 3.80 (1H, dd, $J_{3,8}'=3.9$ Hz, $J_{8,8}'=11.8$ Hz, H-8'), 3.81 (1H, t, $J_{1,2}=J_{2,3}=8.8$ Hz, H-2); ¹³C NMR data, see Table 1.

3.6. Hyacinthacine A₃, (1R*,2R*,3R*,5R*,7aR*)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine

[α]_D +19.2 (*c* 0.43, H₂O); HRFABMS: *m/z* 188.1286 [M+H]⁺ (C₉H₁₈NO₃ requires 188.1287); $\delta_{\rm H}$ (400 MHz, D₂O) 1.26 (3H, d, *J*=6.8 Hz, CH₃), 1.68 (1H, m, H-6α), 1.85 (1H, m, H-7α), 1.95 (1H, m, H-6β), 2.00 (1H, m, H-7β), 3.19 (1H, dt, *J*_{2,3}=8.1 Hz, *J*_{3,8}=*J*_{3,8}'=4.9 Hz, H-3), 3.36 (1H, m, H-5), 3.44 (1H, m, H-7a), 3.74 (2H, d, *J*=4.9 Hz, H-8, H-8'), 3.77 (1H, t, *J*_{1,2}=*J*_{1,7a}=7.3 Hz, H-1), 3.95 (1H, dd, *J*_{1,2}=7.3 Hz, *J*_{2,3}=8.8 Hz, H-2); ¹³C NMR data, see Table 1.

3.7. *Hyacinthacine* B_3 , ($1R^*$, $2R^*$, $3R^*$, $5R^*$, $7R^*$, $7aR^*$)-3-hydroxymethyl-5-methyl-1,2,7-trihydroxy-pyr-rolizidine

[α]_D +3.1 (*c* 0.33, H₂O); HRFABMS: *m/z* 204.1236 [M+H]⁺ (C₉H₁₈NO₄ requires 204.1236); $\delta_{\rm H}$ (400 MHz, CD₃OD) 1.17 (3H, d, *J*=6.8 Hz, CH₃), 1.82 (2H, m, H-6, H-6'), 3.08 (1H, ddd, *J*_{2,3}=7.3 Hz, *J*_{3,8}=4.4 Hz, *J*_{3,8'}=4.9 Hz, H-3), 3.30 (1H, t, *J*_{1,7a}=*J*_{7,7a}=4.6 Hz, H-7a), 3.50 (1H, m, H-5), 3.53 (1H, dd, *J*_{3,8}=4.4 Hz, *J*_{8,8'}=11.0 Hz, H-8), 3.57 (1H, dd, *J*_{3,8'}=4.9 Hz, *J*_{8,8'}=11.0 Hz, H-2), 4.03 (1H, dd, *J*_{1,2}=4.2 Hz, *J*_{1,7a}=4.6 Hz, H-1), 4.52 (1H, ddd, *J*_{6,7}=3.9 Hz, *J*_{6',7}=6.8 Hz, *J*_{7,7a}=4.6 Hz, H-7); ¹³C NMR data, see Table 1.

References

- 1. Nash, R. J.; Watson, A. A.; Asano, N. In *Alkaloids: Chemical and Biological Perspectives*; Pelletier, S. W., Ed.; Elsevier: Oxford, 1996; Vol. 11, pp. 375–376.
- Kato, A.; Adachi, I.; Miyauchi, M.; Ikeda, K., Komae, T.; Kizu, H.; Kameda, Y.; Watson, A. A.; Nash, R. J.; Wormald, M. R.; Fleet, G. W. J.; Asano, N. *Carbohydr. Res.* **1999**, *316*, 95–103.
- 3. Asano, N.; Kato, A.; Miyauchi, M.; Kizu, H.; Kameda, Y.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J. J. Nat. Prod. 1998, 61, 625–628.
- 4. Tropea, J. E.; Molyneux, R. J.; Kaushal, G. P.; Pan, Y. T.; Mitchell, M.; Elbein, A. D. Biochemistry 1989, 28, 2027–2034.
- Wormald, M. R.; R. J. Nash, R. J.; Hrnicar, P.; White, J. D.; Molyneux, R. J.; Fleet, G. W. J. *Tetrahedron: Asymmetry* 1998, 9, 2549–2558; Nash, R. J.; Fellows, L. E.; Dring, J. V.; Fleet, G. W. J.; Girdhar, A.; Ramsden, N. G.; Peach, J. M.; Hegarty, M. P.; Scofield, A. M. *Phytochemistry* 1990, 29, 111–114.
- 6. Kessler, M.; Acuto, O.; Strelli, C.; Murer, H.; Semenza, G. Biochim. Biophys. Acta 1978, 506, 136–154.
- 7. Skudlarek, M. D.; Tulsiani, D. R. P.; Orgebin-Crist, M.-C. Biochem. J. 1992, 286, 907-914.